

Unit 7

Essential Questions

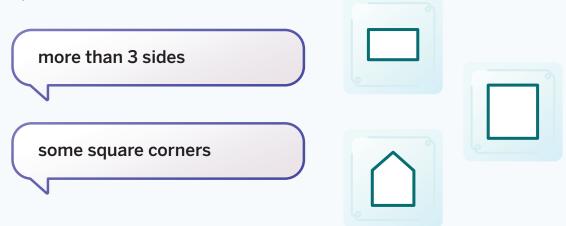
- How can a shape have more than 1 name?
- What does perimeter tell you about a shape?
- How do a shape's attributes relate to its perimeter and area?

Unit Story: Through Piho's Eyes

You can read the Unit Story with your student by visiting the Unit Story page on the Caregiver Hub.

Unit Investigation

Lesson 1 is the Unit Investigation. Students describe and sort two-dimensional shapes, or flat shapes, based on their attributes to build curiosity and apply their own knowledge in a variety of ways. Use the **Caregiver Connection** to help students continue to explore the math they will see in the unit.


Caregiver Connection

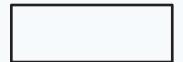
Students may enjoy sorting flat objects into categories at home, such as envelopes, paper plates, coasters, etc.

You can ask:

- "How did you decide to categorize these shapes together?"
- "What attributes (or characteristics) do they have in common?"

Different shapes can share some of the same attributes. Using precise language can help you describe the defining attributes of shapes.

Try This

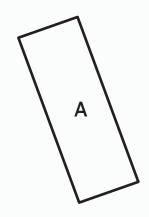

1 Here are 2 quadrilaterals.

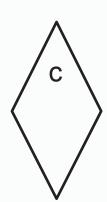
Select all the attributes that the quadrilaterals share.

- A 4 square corners
- (B) 4 sides
- © 3 square corners
- (D) 4 corners
- **E** 2 opposite side lengths that are the same length.

Rectangles, squares, and **rhombuses** are all quadrilaterals with shared attributes and defining attributes that make them unique.

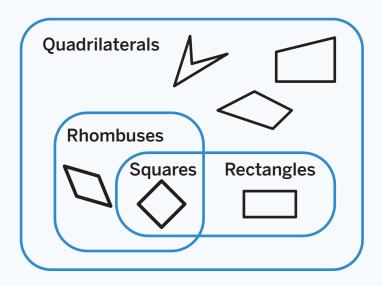
- 4 straight sides
- 4 square corners


- 4 straight sides
- 4 square corners
- All sides are the same length


- 4 straight sides
- All sides are the same length

Try This

1 Here are Quadrilaterals A–E. Circle *all* the rectangles. Draw an X on all the squares. Draw a star on all the rhombuses.



Summary | Lesson 4

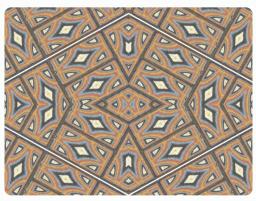
Shapes can belong in different categories because of their shared attributes. The defining attributes of shapes can be helpful in creating examples and non-examples of shapes and in calling them by their most precise name.

Try This

1	Why can some quadrilaterals be called by more than 1 name?

Shapes in the same category can look different and have different attributes.

> **Triangles with** 3 equal side lengths



Triangles with 1 square corner

Try This

Use the image for Problems 1 and 2.

"African Bricks In Kaleidoscope" by Piotr Siedlecki via PublicDomainPictures.net. CCO 1.0.

- 1 Circle 1 rhombus in the pattern.
- Draw a box around 1 quadrilateral in the pattern that is not a rhombus. Explain how you know it is not a rhombus.

Sub-Unit 1 | Summary

In this sub-unit . . .

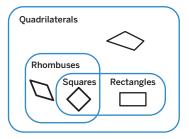
 We described, compared, and categorized shapes based on their shared and defining attributes.

Shapes with square corners and more than 3 sides

- Math tip: Shapes in different categories can share attributes. When describing a specific shape, it is helpful to use a shape's defining attributes.
- We defined rectangles, squares, and rhombuses and drew examples and non-examples of these shapes.

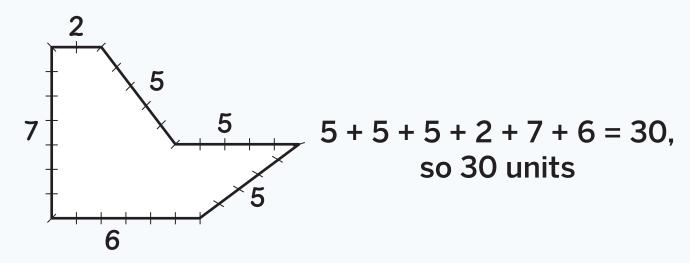
Rectangle

- quadrilateral
- 4 square corners
- 2 pairs of opposite 4 equal-length sides are equal length.


Square

- quadrilateral
- 4 square corners
- sides

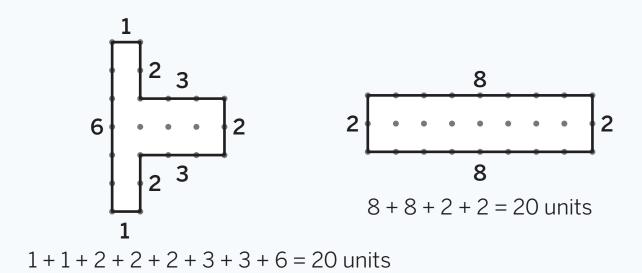
Rhombus


- quadrilateral
- 4 equal-length sides

We categorized quadrilaterals based on their attributes.

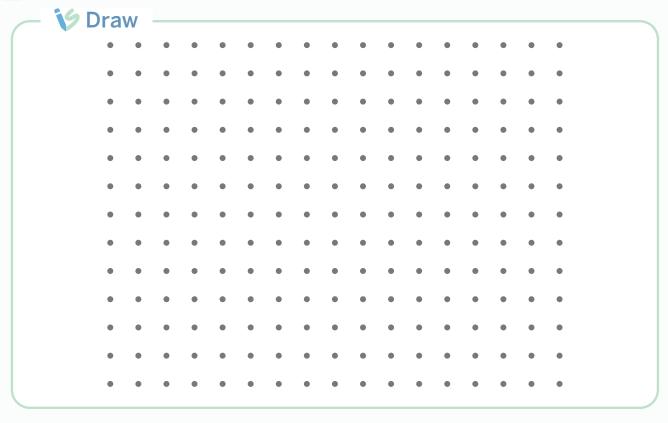
• Math tip: Shapes can belong in different categories because of their shared attributes. When describing a specific shape, it is helpful to use a shape's most precise name.

Perimeter is the total length of the boundary of a two-dimensional shape. You can measure perimeter by counting or calculating the total length of all the sides of a shape.

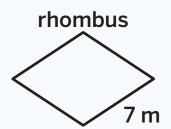

Try This

Determine the perimeter of the shape. The distance between 2 tick marks is 1 unit.

Show or explain your thinking.


answer:

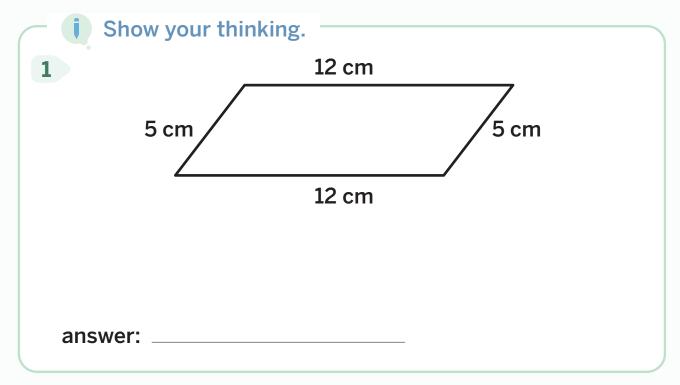
2 shapes that look different can have the same perimeter if the total length of their sides is the same.



Try This

1 Draw 2 different shapes with a perimeter of 18 units.

You can use what you know about a shape's attributes to determine unknown side lengths. You can use multiplication to calculate the perimeter by grouping sides with the same length.



A rhombus has 4 equal sides. So, each side is 7 meters long.

$$4 \times 7 = 28$$

The perimeter is 28 meters.

Try This

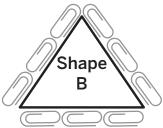
Determine the perimeter of the shape.

You can determine a shape's unknown side lengths if you know the perimeter, some of the side lengths, and the shape's defining attributes.

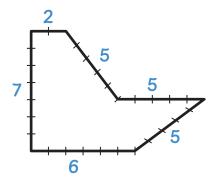
The perimeter of the rectangle is 24 feet.

	?		$2 \times 5 = 10$
5 ft		5 ft	24 - 10 = 14
			2 × ? = 14
	?		? = 7

Try This


- Priya has a square flower garden in her yard. The border around the garden is 32 feet long. How long is each side of Priya's flower garden?
 - Show or explain your thinking.

answer:


Sub-Unit 2 | Summary

In this sub-unit . . .

 We measured the <u>perimeter</u> of different shapes using paper clips.

 We determined the perimeter of shapes when given all the side lengths.

$$5 + 5 + 5 + 6 + 7 + 2 = 30$$

The perimeter is 30 units.

- **Math tip:** Shapes that look different can have the same perimeter.
- We determined the perimeter of familiar shapes when given some of the side lengths.

This is a rectangle, so the sides across from one another are equal.

The perimeter is 56 feet.

Math tip: You can use what you know about the attributes of a shape to determine the unknown side lengths and calculate the perimeter.

Perimeter and area are measurable attributes of rectangles. Perimeter is the total length of the boundary of a rectangle. Area is the number of square units that cover a rectangle.

A shop owner is hanging lights around the front window of her store.

The total amount of glass covering the window represents the **area** of the window.

$$5 \times 5 = 25$$
, so 25 square feet

laura.h/Shutterstock.com

The total length of hanging lights represents the perimeter of the window.

$$5 + 5 + 5 + 5 = 20$$
, so 20 feet

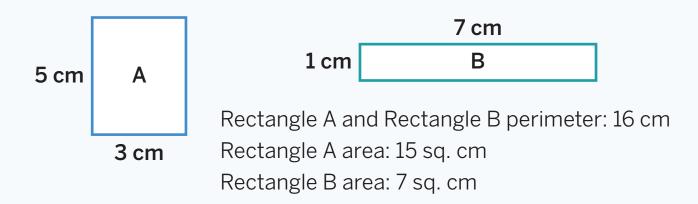
Try This

Select all the expressions that could represent the area of a garden that measures 36 square feet.

$$\bigcirc$$
 (9 × 2) + (4 × 2)

A bedroom has a length of 14 feet and a width of 12 feet. Select all the expressions that could represent the perimeter of the bedroom.

$$(A) 12 \times 14$$


$$(12 \times 2) + (14 \times 2)$$

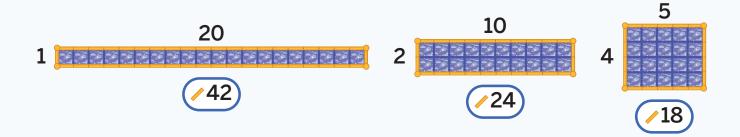
D
$$(2 \times 7) + (2 \times 6)$$

$$(F)$$
 (2 × 14) + (2 × 12)

Summary | Lesson 11

Rectangles with the same perimeter can have different areas.

Try This

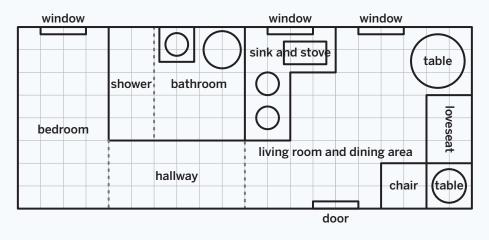

1 Draw 2 rectangles with a perimeter of 24 units but different areas.

_ i Draw		

Summary | Lesson 12

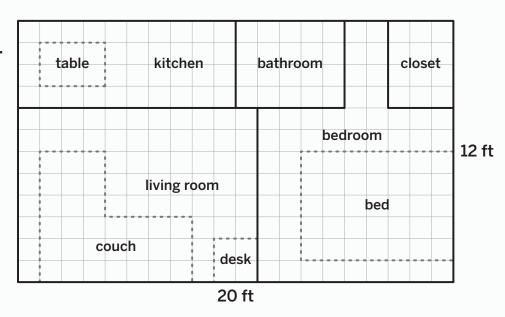
Rectangles with the same area can have different perimeters.

Area of 20



Try This

1 Draw 2 rectangles that have an area of 36 square units and different perimeters.

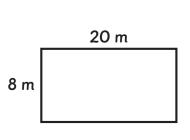


Perimeter and area are important measurements to consider when designing spaces.

Try This

Use the design of the tiny house for Problem 1.

1 Record the perimeter and area of each feature.

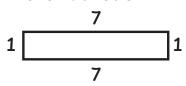

Feature	Perimeter	Area
table		
kitchen		
couch		

Sub-Unit 3 | Summary

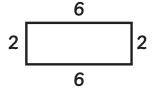
In this sub-unit . . .

 We represented and solved story problems about area and perimeter.

A sculpture sat on a rectangular stone surrounded by a rope barrier. 2 sides of the stone measured 20 meters and 8 meters.

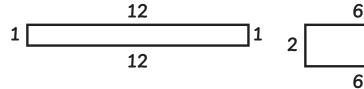


What is the total length of the rope barrier?


 $(20 \times 2) + (8 \times 2)$ 40 + 16 = 56The perimeter is 56 meters. What is the area of the rectangular stone?

8 × 20 8 × 2 × 10 16 × 10 = 160 The area is 160 square meters.

 We created rectangles with the same perimeter but different areas.



area: 7 square units perimeter: 16 units

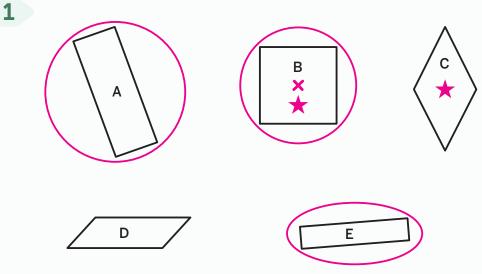
area: 12 square units perimeter: 16 units

 We created rectangles with the same area but different perimeters.

area: 12 square units perimeter: 26 units

area: 12 square units perimeter: 16 units

2

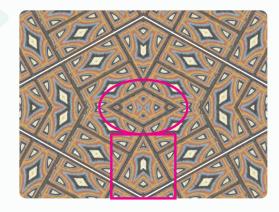

Math tip: You can use known multiplication facts to create rectangles with the same area but different perimeters.

Try This | Answer Key

Lesson 2

1 B, D

Lesson 3

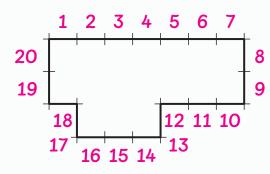

Lesson 4

1 Sample response: Some quadrilaterals have equal sides or all square corners, so they can also be called a more specific name.

Lesson 5

Sample responses:

1-2

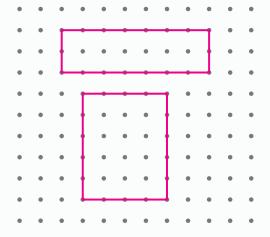


The quadrilateral right below the rhombus is not a rhombus because all 4 sides are not the same length.

Try This | Answer Key

Lesson 6

1 Sample work:



I counted the spaces between the tick marks.

answer: 20 units

Lesson 7

1 Sample response:

Lesson 8

1 Sample work:

$$5 \times 2 + 12 \times 2$$

$$10 + 24 = 34$$

answer: 34 centimeters

Lesson 9

1 Sample work:

The flower garden is a square, so all 4 sides are equal.

Each side is 8 feet long because $4 \times 8 = 32$.

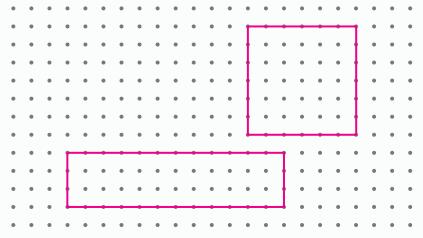
answer: 8 feet

Try This | Answer Key

Lesson 10

1 A, D, F

2 B, C, F


Lesson 11

1 Sample response:

$$\begin{array}{c}
6 \\
6 \times 6 = 36 \\
6
\end{array}$$

Lesson 12

1 Sample response:

Lesson 13

1

Feature	Perimeter	Area
table	10 ft	6 sq. ft
kitchen	28 ft	40 sq. ft
couch	26 ft	30 sq. ft